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Chapter 8 
Analysis of Variance II 
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8.1 OVERVIEW 

Chapter 7 covered the basics of ANOVA.  Recall that ANOVA is structured as a two-step process.  
First, F-tests are used to determine whether there is evidence of differences in treatment means 
at the population level.  Then, if differences are found, pairwise comparison procedures are used 
to identify the nature of those differences.  In particular, it is important to incorporate confidence 
intervals to assess the magnitude of differences and make clinical application of results.  In this 
chapter we will now consider some more advanced topics in ANOVA and experimental design, 
including:   

• Repeated Measures ANOVA (a.k.a. ANOVA with blocks)  

• Two-factor interaction model; analyzing interactions 

• Unbalanced design; potential for confounded factors 

• Multi-factor models  

• Individual prediction 

• Random effects 

 

8.2 REPEATED MEASURES ANOVA 

Repeated measures ANOVA (RM-ANOVA) employs a design that is similar to the matched pairs 
T-test.  The difference is that experimental units will each be measured multiple times, generally 
once for each intervention.  This type of analysis is also sometimes called “ANOVA with blocks”, 
referring to the fact that (just like in a matched pairs study) variability due to the participant is 
“blocked out” of the analysis.  As was the case with matched pairs, this reduction in variability 
allows for greater statistical power, yielding more precise estimation related to the interventions 
under study.   

What is a “treatment”? 

The statistical (not medical) definition of “treatment” becomes much more important 
in multi-factor ANOVA, as the overall F-test examines differences in “treatment” 
averages.  A treatment is a particular combination of levels for all factors involved in a 
study.  For example, suppose that a study considers three factors including gender, 
exercise level, and intervention.  In such a study, one treatment might be “male, active, 
receiving placebo”.  Another might be “female, very active, receiving medication A”.   
It is important to understand that a difference in treatments means for such a study 
could be associated to gender, exercise level, intervention or any combination of the 
three.   An overall F-test for the model will not distinguish where differences lie; it can 
only identify that some exist.   Term-by-term F-tests also exist and these do help us to 
distinguish which factors are involved and should be considered for analysis of 
pairwise comparisons to more fully identify the nature of differences.   
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While the classic example involves people who are being measured multiple times on different 
interventions, the experimental unit certainly can be something other than people.  For example, 
perhaps one wishes to study the effectiveness of a four laboratory procedures, all of which 
involve the use of a centrifuge.  Further suppose that each of 30 available centrifuges holds four 
vials.  By running each centrifuge with one vial corresponding to each lab procedure, the 
individual centrifuges may be used as a blocking variable, thus removing variability associated 
to the centrifuge itself and also perhaps other conditions under which each centrifuge is used.   

8.2.1 MODIFYING THE ANOVA TABLE AND F-TESTS 

Ultimately any repeated measures variable is simply 
considered an additional factor in the RM-ANOVA.  In 
a repeated measures design, each of k interventions 
should occur exactly one time in each of b blocks; 
meaning that there will be N = k*b measurements.  
Table 8.1 illustrates the break-down of sums of squares 
and degrees of freedom from a one-factor ANOVA 
(row 2) into a two-factor design with the incorporation 
of the blocking factor (row 3).  Notice that it is the Error 
SS (red) that will be reduced by the blocking factor 
(green) – meaning that our statistical power should be 
substantially improved whenever the blocking factor is 
indeed related to the response variable of interest.   
Note also that if the blocking factor is unimportant the 
Error SS would still be reduced, but in a manner that is 
proportional to the degrees of freedom (b – 1) so that 
the Mean Square Error (which represents error 
variability) would not be greatly affected.  Refer back 
to Section 7.5 for a review of the basic concepts for SS 
and MS.      

The RM-ANOVA table (Table 8.2) is likewise broken 
into three lines instead of two.  When using a repeated 
measures factor, one does so because of a firm belief 
that factor will be important in explaining variability in 
the response.   Thus the F-test associated with the 
blocks is generally expected to show a significant p-value.  A significant test result for the blocking 
factor simply confirms that blocking was useful.  There is little interest in actually comparing the 
blocks, as comparing specific individuals from the sample does not extend to the population.  For 
this reason, the blocking F-test is seldom discussed as part of the analysis.  Note also that if this 
F-test turns out to show lack of evidence of the effectiveness of blocking – that does not mean that 
the blocks should be removed from the model.  In fact, their removal could lead to a small amount 
of bias due to post-hoc change in the analysis plan (the result of removal would be that MSE 
would change in a small, but random, way).  

Table 8.1 Breakdown of SS 

Algebraic Note 

In this commentary and in Table 8.2, 
the letters b, k, and N are algebraic 
symbols representing actual counts 
for a specific experiment.  Likewise, 
MSINT, SSE, etc. would represent 
actual numbers (that would be 
computed using technology).  It is 
not necessary to memorize these 
things, but rather it is appropriate to 
come to an understanding of how 
this table works.  In particular, 
advance consideration of sample size 
and its impact on error degrees of 
freedom is one of the main goals of a 
power analysis. 
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Table 8.2 ANOVA table for one-way repeated measures design.

 

The F-test for the interventions is the test of interest.  As in one-factor ANOVA, that F-test assesses 
whether or not differences exist among the intervention means at the population level.   Possible 
conclusions from this F-test are:   

• Lack evidence of any differences in the population means across all interventions. 
• Find evidence that the population means for at least two of the interventions are different. 

If differences are found, the next appropriate step will again be pairwise comparisons; the 
structure is nearly identical to one-factor ANOVA.  The only difference will be that variability is 
lessened due to the blocking variable and therefore pairwise comparison confidence intervals 
should be more precise.  Any pairwise comparison procedure discussed in Chapter 7 could be 
similarly applied to an RM-ANOVA model.   

           

8.2.2 ASSUMPTIONS IN RM-ANOVA 

The response variable for any ANOVA needs to be measured at the interval-ratio level.  Repeated 
measures ANOVA makes the same assumptions as a one-factor ANOVA as relates to the error 
component of the model – namely that errors are independent, normally distributed, and 
homogeneity of variance applies.  Additionally, RM-ANOVA typically makes one additional 
assumption that there is no interaction between the blocking factor and the interventions.  Quite 
often, this assumption is referred to as additivity.  Fundamentally, this means that the 
interventions have the same impact regardless of which block is chosen.  Of course in most 
medical studies, the blocking factor will be the patients.  The additivity assumption would be 
violated, for example, if some patients are better off with one intervention while other patients 
respond more favorably to another.   Consider if this were the case, when we look at averages as 

Basic RM-ANOVA Procedure:   

1. Check assumptions of the model. 

2. Produce ANOVA table and check for differences in the population 
means for the factor of interest (Blocking factor should be significant by 
design; its p-value is not of interest) 

3. If differences are found, use an appropriate multiple comparison 
procedure to compare means for the factor of interest. 
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we do in ANOVA, there may be a third intervention that will appear to be the best (when in fact 
the third can always be bettered by one of the first two, the choice of which depends on the 
patient).  If interaction like this is expected, one should not set up a repeated measures model.  
Instead a search for other characteristics (e.g. gender, physical attributes, etc.) that might help to 
assign the best intervention would be more appropriate.    

The additivity assumption is not particularly easy to assess in a formal manner.  We must 
determine whether or not we can expect the interventions to be best/worst in similar patterns 
across all participants.  If the answer is no, the expectation is that there will be interaction and a 
different experimental design would be needed.  The additivity assumption can be checked to 
some extent with an interaction plot.  In the case of RM-ANOVA, an interaction plot displays the 
data (we will later see for multi-factor ANOVA, interaction plots will display sample means).   In 
general, an interaction plot for the purpose of RM-ANOVA assumption checking is a plot of the 
data having the following attributes: 

• Response variable plotted on the vertical axis. 

• Repeated Measures factor plotted on the horizontal axis (the order in which participants 
are listed generally wouldn’t matter).   

• Interventions represented by different colors and lines. 

If there is no interaction, “trends” as represented by the colored line seen in the plot will generally 
be reasonably the same (e.g. if the “red” intervention is best for one subject, by around three units 
over the “orange” intervention, it would be best by around the same amount for all subjects).  
Further discussion of interaction plots will be found as part of the example in Section 8.3 as well 
as in a discussion of general two-factor ANOVA beginning in Section 8.4.  

8.2.3 RM-ANOVA AS BALANCED DESIGN – DF IMPLICATIONS 

The astute reader may have noticed that a repeated measures design will typically have a 
balanced design with one replication, meaning that every treatment (subject-intervention 
combination, in this case) appears exactly once in the study.  The total sample size is therefore the 
product of the number of blocks and the number of interventions:  N = b*k.  Incidentally, this is 
the primary reason that RM-ANOVA requires the additivity assumption.  As we will later 
discuss, an interaction term would require 
allocation of (b-1)*(k-1) degrees of freedom to 
estimate.  In a model where the number of 
observations is N = b*k, that allocation would 
mean that zero degrees of freedom would 
remain to estimate error (this would be 
catastrophic as it would ensure that no model 
estimation would be possible).    

8.3 A REPEATED MEASURES ANOVA 
EXAMPLE 

Algebraic Note 

The RM-ANOVA in Table 8.2 has                  
N – k – b + 1 degrees of freedom for error.  
Because N = b*k, it is not difficult to show 
algebraic equivalence to the (b-1)*(k-1) 
degrees of freedom necessary to estimate 
interaction. 
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In section 7.8, we discussed a fictitious study that examined the effect of four different diets on 
the total length of nightly REM sleep cycles.  In this study, we concluded that diets 2 and 3 were 
superior to diets 1 and 4.  Diet 4, due to the large amount of difference when compared to 2 and 
3, would likely not be advised in any circumstance.  But suppose that diet 1 is cheaper and far 
more convenient when compared to diets 2 and 3.  The analysis in section 7.8 showed that diets 
2 and 3 resulted in greater average REM sleep; the confidence intervals indicate this average is 
better by roughly 20 to 60 minutes.  It also suggests that diets 2 and 3 might have as much as 24 
minutes difference in their true population averages.   What can we do if we want to pin these 
numbers down more precisely?  There are two possibilities in constructing a follow-up study: 

• Increase sample size:  We had 200 participants in this study already (50 in each group).  
Increasing sample size would yield tighter confidence intervals; but we would need to 
increase sample size by large amounts (probably well into the thousands) in order to make 
serious headway.  Such a large study may not be feasible. 

• Use repeated measures:  Instead of 200 participants, we may get by with only 50 if we 
lengthen the study.  The original study was one month in length; but each participant was 
measured on only one of the four diets.  For the follow-up, suppose we design a seven 
month study in which participants will engage, at different times, in all four diets.  The 
particulars:  each participant will be randomly assigned an order in which they will 
participate in the four diets, and they do so during months 1, 3, 5, and 7.  Their REM sleep 
will be measured at the end of each of those months.  Note that we should allow them to 
eat whatever they normally would during months 2, 4, and 6 – these are called washout 
periods and help to ensure that the previous treatment doesn’t affect results for the 
current treatment.  The best part of this scheme is that we likely get greater precision while 
at the same time using only 25% of the original participants.   

The lower half of Table 8.3 illustrates what might happen if we follow-up with the repeated 
measures study.  The upper half shows the original results from the one-factor ANOVA in Section 
7.8 for comparison; making this comparison should help you to understand the clear benefits that 
repeated measures can add to the design.  The items of note: 

• R2 jumps by a large amount for the RM-ANOVA study.  This is an indication that repeated 
measures in this case is very successful. 

• Mean Square Error (MSE) drops from 1737 in the first model to 137 in the RM-ANOVA 
model.  This number controls the standard errors for confidence intervals, which is why 
confidence intervals in the RM case are only about 12 minutes wide  

Most importantly, we now have much better information comparing diets 1, 2, and 3.   We are 
still unable to tell a difference between diet 2 and diet 3.  Diet 2 results in an average of at least 24 
minutes additional sleep as compared to Diet 1.  Diet 3 results in an average of at least 41 minutes 
additional sleep as compared to Diet 1.  And Diets 2 and 3 can now be differentiated – Diet 3 is 
better by an average between 11 and 23 minutes.  Diet 4 is worse than Diet 3 by at least  an  hour  
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Table 8.3.  One-way ANOVA vs. Repeated Measures ANOVA comparison 

       
 
(on average), and at this point may clearly be removed from consideration.  In comparing Diets 
1, 2, and 3, we now have a clear ranking and a reasonably good idea of the magnitude of 
differences between the three diets.  It should now be fairly simple to combine this information 
with costs and make recommendations to patients.      

Before leaving this example, let’s look briefly at the additional validity condition required for RM-
ANOVA.  One way to check additivity is to look at an interaction plot (see section 8.2.2).  This 
plot for this example is shown in Figure 8.1.  The 50 patients are listed along the horizontal axis 
here (note that the order of this list is arbitrary).  As you view the four colored lines representing 
the diets, you’ll note that for the most part they traverse similar patterns as you go from one 
patient to the next.  This graph shows no hint of any major interaction, and we should feel quite 
comfortable with RM-ANOVA in this situation.  What would interaction look like?  If major 
interaction were present, the order of the colors would most likely differ a lot by patient. 

Figure 8.1  Interaction Plot 
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8.4 TWO-FACTOR ANOVA:  INTERACTION & MAIN EFFECTS 

As seen in Section 8.2, RM-ANOVA is used when there are two factors in the model but only one 
factor is of primary interest (while the other is present due to repeated measurements on people 
and an expectation of variability in response across different people).  Technically, the simplest 
RM-ANOVA is in fact a two-factor ANOVA model that incorporates an “additivity” assumption.  
At this point we now transition into ANOVA where two factors are of equal interest.  How do 
things change?  The following issues must be considered: 

1. There will be more than one relevant F-test.  Pairwise comparisons likewise become more 
numerous (and only some of them will be of interest). 

2. Interaction between factors is possible and can be modeled, provided that the design has 
replication.  When present, its interpretation takes precedence over that of individual 
factor main effects.   

3. Cell Sizes become more important (differing cell sizes now create the possibility for 
confounding).  For this reason, balanced design is ideal.  A balanced design is one that 
has equal cell sizes – i.e. the same number of observations for each treatment (combination 
of factor levels).  This chapter will focus on designs that are balanced.   

The idea of interaction is of key importance.  You have already seen the idea of an interaction 
plot in assessing the additivity assumption for RM-ANOVA.  It is now important to consider 
what things look like when we do have interaction.  Before considering examples, two formal 
definitions are needed:  

 

When analyzing two-factor ANOVA models, it is possible observe any one of the following: 

• No evidence of effects associated to either factor. 

• Only main effects (the factors may be discussed separately). 

• Interaction that does not allow for any separation of main effects (the factors must be 
discussed simultaneously). 

• Interaction that still allows for some separation of main effects (general aspects of the 
factors may be discussed separately, but specific aspects still require simultaneous 
consideration).  An example of this would be a scenario in which an overall “best” 
treatment is identified, but the amount by which it is “best” depends on one or more other 
factors.   

Main Effect:  Differences in population means that are associated to a single factor.   

Interaction:  Differences in population means that are associated to multiple factors 
in such a way that complete separation of these factors in discussion of 
these differences cannot be achieved.   
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These situations will be easiest to identify in the context of examples.  Consider a study that has 
as its main goal to determine if a certain medication is effective for weight loss.  The medication 
is to be used in conjunction with a standard exercise program.  Biochemists believe that the 
effectiveness of the medication may be different for men and women (in other words, there may 
be an interaction effect between gender and the medication).   

Forty participants (20 men and 20 women) are available for study, and are randomized into two 
groups.  Group A, containing 10 men and 10 women, will receive the medication in addition to 
the exercise program.  Group B, also containing 10 men and 10 women, will receive a placebo in 
addition to the exercise program.  The response variable for this study will be the amount of 
weight lost over the course of one month on this program (note that negative values are possible 
here and would imply a weight gain).   

By definition, an interaction plot for two-factor ANOVA shows the sample average for the 
different levels of Factor A at each different level of Factor B (i.e. both factors are relevant to the 
plot).  The factors are arbitrarily assigned here and can be interchanged as desired.  What this 
means is: 

• The vertical axis will always represent the average response (average weight lost in the 
case of our example). 

• The horizontal axis will be labeled with the levels of one factor (for our example we will 
label it with the medication). 

• Different symbols/colors/lines will be used to represent the levels of the other factor (we’ll 
use blue for men and pink for women to differentiate the genders).   

It is common practice (but not a necessity) to place the factor with the most levels on the horizontal 
axis so that there will be fewer colored lines.  This may lead to an interaction plot that is easier to 
understand and interpret. 

 

While recognizing that statistical assessment is needed for inference, perhaps the best way to 
understand the nuances of interaction is by examining several different interaction plots in an 
attempt to understand the ideas of main effects, interactions, and the scenarios described above.  
Let’s do this with the weight-loss example; in doing so, we shall assume that appropriate 
statistical analyses have been completed and that all sample mean differences greater than 1 
pound have been identified as statistically significant differences.  The six graphs on the following 
pages illustrate the different types of relationships that could potentially exist between gender, 
medication, and average weight loss. 

Important Point:  Keep in mind interaction plots show SAMPLE averages.  They do 
not illustrate the inherent variability involved in sampling, and therefore they cannot 
be interpreted for population inference without further analysis using F-tests and 
pairwise comparisons. 
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Example A:  In this example, we have only 
one main effect.  Gender differences may be 
described as follows:  Men lose more weight 
on average as compared to women when 
using the exercise program involved in the 
study.  Unfortunately, in this case the 
medication did not show any evidence of 
being useful (note that both men and women 
lost about the same average amount of 
weight whether or not they used the 
medication).  There also is NO evidence of 
interaction here; gender has no bearing on a 
discussion of the effectiveness of medication. 

 

Example B:  This interaction plot again 
displays a single main effect – this time an 
effect of the medication.  There is no evidence 
of any difference in average weight loss in 
comparing men and women.  Irrespective of 
gender, there is evidence that the 
medication increases average weight loss.  
As we have no evidence that gender has any 
bearing on this conclusion, there is no 
interaction to consider.   

 

Example C:  In this interaction plot, there is 
still no evidence of interaction (one should 
have noticed by now that when there is no 
interaction, the lines in the plot are 
reasonably close to parallel, although again 
the actual conclusion should always rely on 
the associated F-test).   There are main effects 
here:  men lose on average more weight than 
women (whether the medication is used or 
not); and the medication seems to be 
effective in increasing average weight loss 
(irrespective of gender).   The idea that there 
is no interaction here is what allows 
separation of these two conclusions.   
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Example D:  The remaining three examples 
involve interaction (note the non-parallel 
lines in the plots).  From this plot, we may 
identify three things:  (1) Men lose on 
averages more weight than women, 
regardless of whether the medication is used; 
(2) the medication increases the average 
weight loss irrespective of gender; (3) the 
medication increases average weight loss 
by a greater amount for the men.  This last 
statement is the statement of interaction.  
Now gender and medication cannot be fully 
separated (while the medication is effective 
for both males and females, it is more effective 
for the men.)  This mild interaction impacts 
only the magnitude of differences. 

Example E:  In this example there exists a 
complex interaction and it is no longer 
possible to separate main effects at all.  That 
is, no conclusions can be made that relate 
only to gender; similarly no conclusions can 
be made relating only to the medication.  
What conclusions can be made here?  The 
medication is effective in increasing average 
weight loss for the men, but not for the 
women.  Notice how this conclusion 
carefully incorporated both gender and the 
intervention.   Also note that if one looked 
only at the medication, completely ignoring 
gender, one would see an increase in the 
average.  That is to say that the main effect for 

the intervention will test significant in this model.  But one can see from the interaction plot that no 
blanket statements about the effectiveness of the medication would be correct (it is only effective 
for men, not women).  This brings up an important point:  when interaction is both statistically 
significant and clinically important, individual assessments of the main effects are quite often 
inappropriate. 

Returning momentarily to Example D, in that case we were able to make a statement with regard 
to overall effectiveness of the medication – but only in so much as the both genders saw 
improvement.  The magnitude of the improvement depended on gender and therefore even in 
that case, discussion of the size of any effect for the medication cannot occur unless gender is also 
involved in the discussion.  

Example E
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Example F:  Again there is interaction in this 
case and thus any discussion must relate to 
both gender and the intervention.  What is 
seen here is that the medication appears to be 
somewhat helpful for men – improving their 
average weight loss.  Women on the other 
hand should not use this medication if they 
wish to lose weight, as in their case it appears 
to inhibit weight loss (women lose more 
weight through exercise without the 
medication. 

 

8.5 TWO-FACTOR ANOVA:  MODEL, SIGNIFICANCE, AND COMPARISONS 

As mentioned many times in the previous section, evaluation of interaction plots is a descriptive 
analysis; to draw inference about the population one must return to hypothesis tests and 
confidence intervals.  For a two-factor ANOVA model with interaction, the following changes are 
necessary to inferential analysis: 

1. The “model” portion of the ANOVA table will now have three lines – one for each factor’s 
main effect and one for interaction.  There will likewise be three F-tests given in the 
ANOVA table. 

2. The F-tests must be considered in a specific order, beginning with the test for interaction.  
In the event that a significant interaction is found, the tests for main effects will not be 
meaningful and should no longer be considered.   

3. Interaction plots can be useful to aid in identification of differences, but all differences 
should be confirmed using Tukey adjusted pairwise comparisons (occasionally a 
procedure other than Tukey may be more appropriate).    

The strategy below lays out the flow of analysis in a typical two-factor ANOVA.  One should 
generally follow the outlined steps, in order: 

Key Point:  When interaction is both statistically significant and clinically 
important, individual assessments of the main effects are quite often inappropriate. 

 

Additional Point:  Much importance is given to the effect size or the magnitude of 
a change based on an intervention.   It should be noted that this will be a necessary 
part of any discussion of the clinical importance of any result.   

Example F
Gender & Drug Effects - Complex Interaction
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8.5.1 A FEW DETAILS OF THE ANOVA TABLE 

A generic ANOVA table for a balanced 
two-factor ANOVA with interaction is 
shown in Figure 8.3.  Keep in mind that 
one would not calculate sums of squares, 
mean squares, or F-statistics by hand.  
Total SS are still broken into “Model” and 
“Error” but now the Model SS may be 
considered as the sum of three 
components related to the two factors and their interaction (see also the concept map in Figure 
8.2).  With regard to the algebra of the ANOVA table, suppose that Factor A has a levels and 
Factor B has b levels.  In this case there will be a*b treatments (combinations of the levels of factors 
A and B).  The term ”balanced” implies the same number of observations (n) will be taken for 
each treatment, so that in total there will be N = n*a*b observations available.   

Strategy for analyzing Two-Way ANOVA Design with Interaction 

1. Check assumptions for the model (normality, homogeneity, independence). 
2. Check for an interaction effect.  Use the F-test from the ANOVA table for the 

interaction line.  If the F-test is significant, produce an “interaction plot” to 
determine whether interaction seems to be complex.  If so, interpret the plot in 
conjunction with Tukey intervals at the interaction level and proceed to Step 
4.  If no interaction is found, continue to 3A; for mild interaction, go to 3B.  

3. Consider main effects for each factor (individually). 
a. If interaction was insignificant:  F-tests for main effects are valid; if 

significant use a pairwise comparison procedure (such as Tukey) to assess 
differences individually for each factor. 

b. If interaction was significant:  F-tests for main effects are not valid.  If there 
was an interaction, then both factors are important (even though main 
effects F-tests may have insignificant p-values).  If there is still a “visible” 
main effect, then the main effect may in some sense be “much stronger” than 
the interaction.  The interaction plot and Tukey intervals should provide 
some idea of what if anything one can say about main effects.  Pairwise 
comparisons however should occur only at the interaction level unless the 
main effects are so much larger as compared to interactions that  the 
interactions may be deemed clinically unimportant. 

4. Summarize your conclusions in the context of the problem. Include ANOVA 
output, interaction plots (quite useful in helping to see likely differences), and 
pairwise comparisons (needed to confirm differences statistically). 

Figure 8.2  Sums of Squares Breakdown 

Total SS

Model SS

Main Effect 
Factor A

Main Effect 
Factor B

A*B Interaction 
Effect

ERROR 
SS
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Figure 8.3 ANOVA Table for Two-Factor ANOVA 

Source DF 
Sums of  
Squares 

Mean  
Squares F-Statistic 

Factor A a – 1 SSA MSA F = MSA / MSE 
Factor B b – 1 SSB MSB F = MSB / MSE 
A*B Interaction (a – 1)*(b – 1) SSAB MSAB F = MSAB / MSE 
Error DFE SSE MSE  
Total N – 1 SSTOT   

As in previous ANOVA models, mean squares are obtained by dividing the corresponding sums 
of squares by associated degrees of freedom.  F-statistics are obtained by looking at ratios of the 
mean squares; these result in p-values that inform as to the significance of interaction and main 
effects.   

Sample size yields statistical power which is necessary to find differences between treatment 
means when they exist.  As such, perhaps the most important item in the ANOVA table is degrees 
of freedom.  In particular, the degrees of freedom for error (labeled DFE in the table above) are 
typically responsible for statistical power.  One might think of DFE as the effective sample size 
for an analysis.  In fact, one ought to calculate DFE prior to the analysis in order to insure that the 
effective sample size will not be too small.  That calculation is not terribly difficult – the steps are 
as follows: 

1. Calculate the total DF by subtracting one from the overall sample size.   
2. Calculate the DF needed for each factor by subtracting 1 from its number of levels. 
3. Calculate the interaction DF by multiplying together the DF for each factor involved in 

the interaction.  
4. Calculate DF for error by subtracting all DF calculated in (2) or (3) from the total.    

If the error DF will be too small, the solution is to add replication (i.e. increase the number of 
observations, n, that are allocated to each treatment).   As models grow more complex in nature, 
determination of appropriate sample size can become substantially more complicated, so this is 
typically something best accomplished with the aid of a practicing statistician.   

8.5.2 DESIGN ASPECTS:  REPLICATION AND COMPLETENESS 

A complete factorial design is one in which every combination of factor levels is implemented.  
That is to say that each cell – each combination of factor levels – has available data.  A balanced 
design is a complete design in which each factor-level combination is used the same number of 
times.   Note that balanced does imply complete.  In an ideal world, designs will be both complete 
and balanced (and if not, very close to it).  When either is lacking, confounding can occur.  With 
regard to ANOVA, confounding means that for factors A and B which are confounded, it is not 
possible to fully and separately assign their effects (this is different from interaction because if 
effects are confounded one simply cannot know which factor is responsible for an observed 
difference!).   
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As an example of confounding, suppose that it is of interest to consider the effects of gender and 
age on height.  A sample of 30 people is collected, but no attempts at stratification are made.  The 
resulting sample is illustrated in the design chart below (note that a design chart illustrates all of 
the possible treatments and each “x” represents a single observation for that treatment).   

 Children Young Adults Elderly 
Male xxxxxxxxxx xxxx x 
Female x xxxxxxxxxx xxxx 

This sample is problematic, as it is likely to suggest that females are taller on average as compared 
to males.  The reality is that adults are taller than children – and in this sample we have 
substantially more male children than female children (and conversely more female adults than 
male).  In fact, all but one of the children in this sample are male.  The main effects of age and 
gender will be confounded.  We cannot accurately compare male and female (because we’ll wind 
up seeing difference due to age).  Nor are we able to accurately compare, for example, heights of 
children and elderly – the magnitude of differences we find are going to be affected by the fact 
that most of the children in this sample are male while most of the elderly are female.  With 
substantial confounding present, conclusions from an ANOVA model will not be useful. 

Structuring a design in this way is to be avoided.  This sample should be stratified in such a way 
that confounding will be avoided – as is the case in the design chart below.  When designs are 
balanced, comparisons will be fair and confounding is not possible.  Having equal numbers of 
children, young adults, and elderly across gender will allow comparisons of the two genders to 
remain fair.  Likewise a comparison of children to elderly would be fair since males and females 
are equally represented.   With balanced design, we are able to differentiate effectively between 
the factors and conclusions based on ANOVA will be sound. 

 Children Young Adults Elderly 
Male xxxxx xxxxx xxxxx 
Female xxxxx xxxxx xxxxx 

8.5.3 POST-HOC COMPARISON 

Main effects comparisons, when they are valid (i.e. when interaction lacks evidence of 
importance), are constructed a similar manner to a one-factor ANOVA.  Adjustment for multiple 
comparisons (see Section 7.7) applies and confidence intervals can be obtained and interpreted 
for each main effect separately when no interaction is present. 

If interaction is present, it is necessary to obtain confidence intervals at the interaction level of the 
model.  What does this mean?  Suppose that we do have a balanced 3x2 factorial design in which 
the factors are age and gender.  For convenience, we number the cells of the design table as seen 
below. 

 Children Young Adults Elderly 
Male (1-1) (1-2) (1-3) 
Female (2-1) (2-2) (2-3) 
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A main effects comparison for gender would compare the combined average results from (1-1), 
(1-2), and (1-3) with the combined average results of (2-1), (2-2), and (2-3).  Main effects 
comparisons for age would be very similar, but combining the other direction in this table.  
Interaction level comparisons, on the other hand, compare individual cells within the table 
without any combining of cells.  Thus at the interaction level the following 15 different 
comparisons might be made in this example: 

(1-1) vs (1-2) (1-1) vs (1-3) (1-1) vs (2-1) (1-1) vs (2-2) (1-1) vs (2-3) 
 (1-2) vs (1-3) (1-2) vs (2-1) (1-2) vs (2-2) (1-2) vs (2-3) 
  (1-3) vs (2-1) (1-3) vs (2-2) (1-3) vs (2-3) 
   (2-1) vs (2-2) (2-1) vs (2-3) 
    (2-2) vs (2-3) 

But these are not all important to us.  For example, it makes little sense to compare heights of 
male children to those of female adults.  There are several that we might care about, and these 
have been illustrated using different colors in the table above: 

• Green Comparisons:  Compare the three different ages for men 
• Blue Comparisons:  Compare the three different ages for women 
• Orange Comparisons:  Compare men and women at each different age. 

Note that key to these comparisons being interesting is that they share something in common:  
men, women, or age.  The remaining comparisons have nothing in common and would typically 
not be of interest.   

 

8.5.4 PREDICTION FOR INDIVIDUALS 

In the field of healthcare, individual prediction can often be important.  However very few 
statistical software programs produce any sort of prediction by default.  And such a focus is rare 
within medical literature as well.  For fixed effects models (see Section 8.7 for a definition of this, 
and also note that repeated measures automatically involve a random effect), prediction intervals 
can be developed by applying the empirical rule (see Section 2.6).  The sample mean for the group 
will be taken as the center of the interval, and the square root of MSE is the estimate that should 
be used for standard deviation.  As a simple example, suppose that MSE=25 and the sample-mean 
height for young-adult men was 70 inches.  Based on MSE, the standard deviation estimate would 
be 5 and therefore the empirical rule estimates that most young-adult males would have heights 
between 60 and 80 inches.   While this technique does require some hand-calculation, it can also 
be quite useful when evaluating results provided as part of published research.   

  

Key Point:  Computer programs do not recognize which comparisons may or may 
not be important.  Typically, they simply generate all possible comparisons.  It is 
up to the researcher to determine which are useful and which are not.   
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8.6 TWO-FACTOR ANOVA EXAMPLE 

Consider a study published in the Journal of Clinical Nursing in 2013.  Authors designed an 
experiment to examine how a nurse-led intensive educational program impacted control of 
hyperphosphataemia in a certain group of patients.  The details of the study are available in the 
published results of Shi, et. al.67, but suffice it to say that in the opinion of at least one statistician, 
this particular study was fairly well constructed.  Here we will focus on one particular model that 
the authors of this study used to evaluate the effects of their intervention on serum phosphorus 
levels.  In statistical terms, here are the details of that two-factor repeated measures ANOVA 
model: 

• Response variable:  Phosphorous level in mmol/L 
• Repeated measures:  Participants’ phosphorous levels were measured initially to obtain a 

baseline and then measured again at 3 months and 6 months of involvement in the 
educational intervention.  Three measurements were taken for each participant. 

• Factor 1:  Intervention (80 participants were randomized 40 each into either intervention 
group or control group) 

• Factor 2:  Time (participants were measured at baseline, or prior to intervention; they were 
then measured again after three months and six months of the intervention, respectively) 

Before proceeding to their analysis, it is important to recognize two additional design elements 
here that go beyond a simple two-factor ANOVA.  The first is repeated measures, and it is 
sufficient to understand that this is being incorporated reasonably and for the simple purpose of 
reducing error variability by accounting for difference among the participants.  The second design 
element is more advanced.  In addition to repeated measures, participant is a nested factor in this 
model.  Nested factors are factors which the levels (in this case the participants) occur in 
combination with only one level of another factor.  Here, participant is nested within intervention.  
Each participant is in only one specific intervention group (either treatment or control).  In 
contrast, each participant in each intervention group is measured at each of the three different 
time-points.  Hence the intervention and time factors are called crossed factors since each 
combination of levels does occur in the study.  Why does this matter?  Interaction effects can be 
considered for crossed factors, but they cannot be studied (and in fact would be assumed not to 
exist) for two factors that are nested. 

Given the complex nature of this design, the statistical analysis should almost certainly be done 
in consultation with a statistician.  In terms of understanding results, however, the repeated 
measures factor (participant) doesn’t play a large role; for interpretative purposes we can view 
this as a two-factor ANOVA (factors of interest being intervention and time).  In the first two line 
of their second table, the authors of this study have reported group (sample) means, F-statistics, 
and p-values from this model.  They’ve also reported some post-hoc t-tests (multiple 
comparisons) in the third line, presumably as an attempt to compare months 3 and 6 to baseline.  
Based on available information in their manuscript, we can recreate a portion of the Shi study’s 

 
67 Shi, Y.X., Fan, X.Y, et. al. (2013).  Effectiveness of a nurse-led intensive educational programme on chronic kidney failure patients with 
hyperphosphataemia: randomized controlled trial.  Journal of Clinical Nursing, 22, 1189-1197. 
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ANOVA table as well as an interaction plot for this model.  These are shown in Figure 8.4.  Given 
this information, we will now follow analysis through the steps of the ANOVA procedure. 

             Figure 8.4  Interaction Plot related to the Shi study1 

 

 

Step 1:  Check assumptions.  As we don’t have the authors’ actual data here, we will assume the 
authors collected a reasonable sample and that they checked to ensure that the three main 
assumptions (normality, constant variability, and independence) of ANOVA are satisfied. 

Step 2:  Check for interaction effect.  The p-value for interaction in this model is significant.  
Since we have evidence of interaction, we would not consider main effects (except in the rare 
circumstance where we might deem the interaction to be statistically significant but clinically 
unimportant).   

Step 3:  Interpret interaction effect.  Ideally we would have some confidence intervals here, but 
the authors of this study do not provide these.  They do provide two statistically significant post-
hoc t-tests, presumably showing that the 3-month and 6-month time-points differ when 
compared to baseline for patients who receive the intervention.  Notice how interaction is built in 
here.  The same statement is not true for patients who do not receive the intervention; for those patients 
the authors didn’t include post-hoc t-test results, but we can see from the interaction plot that 
pairwise comparisons within the control group would not likely show evidence of differing 
means.   
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Caution:  We should not attempt to analyze main effects in this example.  Though they result 
in low p-values, the F-tests for group and time separately are not relevant here.  It isn’t true, for 
example, that the intervention group always has lower average phosphorus levels compared to 
control.  That’s likely a valid statistical conclusion at 3 months and 6 months, but not at baseline.  
Notice how to talk about the intervention here one must also reference time (and vice versa).  This 
duality is the essence of an important interaction.  Taking the time to understand the manner in 
which interaction requires looking at both factors to explain the impact of either is perhaps the 
most important thing one can do when trying to understand the idea of interaction. 

8.7 IMPORTANT ADVANCED TOPICS 

ANOVA designs need not stop with two factors.  Models having three or more factors may be 
constructed and complex interactions between any and all factors may be examined.  Methods 
from one and two-factor ANOVA do “scale up” in some of the ways one might expect: 

• The “model” portions of ANOVA tables have lines for each main effect or interaction term 
that is to be examined. 

• Pairwise comparisons may be considered for any non-interacting main effects as well as 
appropriate interactions.  Analysis begins with the most complex interactions. 

It is generally true, however, that the more factors one adds to the model, the more complex 
interpretations will become.  As more factors are used, balance in design may become an issue 
(after all, it must remain feasible to collect the data).  As three or more factors become involved 
in an interaction effect, interpretations lose substantial clarity.   For these more complex designs, 
one is usually best to consult with a practicing statistician. 

Another issue that may substantially complicate an ANOVA is the presence of a random effect.  
A random effect is a factor for which not all possible levels of the factor will be represented in the 
analysis (if all levels of interest are studied, we call them fixed effects).   A common example of 
this occurs in repeated measures analysis – where “subject” is a random factor.  In that particular 
case, due to the additive nature of the repeated measures model, the fact that subject is a random 
factor has no real impact on results.  But in multi-factor ANOVA with interaction models, the 
presence of random factors typically will rewrite the rules for many of the F-tests – making 
consultation with a statistician very important in such a case. 

Still another issue arises when there exist quantitative variables (in addition to your factor of 
interest) that may affect the response variable.  If such variables are available, we can account for 
them using an Analysis of Covariance (ANCOVA) model.  Provided that the quantitative 
covariate(s) are not variables of particular interest to the researcher, they are often treated in the 
same manner as blocks.  That is to say that they are included in the model to reduce variability 
(usually under the assumption that these variables have no interaction with the factors of interest) 
and otherwise do not play a large role in conclusions of the analysis.  In healthcare literature, 
authors often reference as part of their methods that they are “adjusting” for certain quantitative 
variables that they do not otherwise discuss.  This usually implies they are using ANCOVA.   
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8.8 CHAPTER SUMMARY 

While it may be difficult to believe – this chapter provides only a small glimpse into the potential 
complexities of ANOVA models.  This text is not intended to cover substantially advanced design 
issues, nor would it be recommended that complex designs be handled without the aid of a 
statistician.  Two advanced statistics texts that would cover such designs are suggested in the 
footnotes.68,69  

Ultimately, we examined two models that behave very nicely:  repeated measures ANOVA and 
two-factor ANOVA using balanced design (and assuming fixed effects).  The reality is that in 
practice, analyses are seldom this simple.  Two factors often are not enough to appropriately 
model a situation; random factors are often involved; and missing data are common – meaning 
that balance can be lost even in studies which are designed to attain it.   The strategies when these 
things happen are two-fold: 

1. Understand the issues involved (e.g. confounding, changes to the F-tests required for 
random factors, etc.) 

2. Consult with a statistician to ensure that analyses are done correctly and that you 
understand how to properly interpret the results. 

While the second of these may seem apparent, all too often results are published that make it 
clear that this strategy was not employed. 

8.9 EXERCISES 

1. A study involves 120 participants randomized 60 each into an intervention group and a 
control group.  The study also involves each participant being measured twice (a pre-test 
and post-test scenario). 

a. Explain how this could be handled using repeated measures ANOVA. 

b. Explain how this could likewise be handled using an independent two-sample T-
test. 

Note:  Neither method is actually better than the other (they are equivalent). 

2. A researcher proposes to conduct a study of three medications proposed for use in 
preventing seizures.  He proposes to place patients on medication 1 for the first month, 
medication 2 for the second month, and medication 3 for the third month.  Each month he 
will record the number of seizures for each patient.  This is poor design for two reasons.  
Explain what this researcher did wrong and how this particular study ought to be done 
differently. 
 

 
68 Montgomery, D.C. (2013).  Design and Analysis of Experiments.  New York:  John Wiley & Sons. 
69 Kutner, M.H., Nachtsheim, C.J., Neter, J., and Li, W. (2005).  Boston: McGraw-Hill. 
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3. In a repeated measures ANOVA, authors of a manuscript report R2 for the ANOVA of 
99.8% and suggest that this is clear evidence that the treatment they are studying has been 
effective.  Explain why they are wrong to jump to this conclusion. 
 

4. A study is to examine blood pressure by gender and medication (there are two 
medications being tested and some participants will be given a placebo).   Suppose there 
is found to be an interaction between medication and gender.  Explain what this means.  
Could there also be an important main effect of gender or medication at the same time? 
Explain. 
 

5. Consider Table 2 in the Shi manuscript.70   
 

a. Perform an analysis (similar to the example given in Section 8.6) for the response 
variable representing the product of calcium and phosphorus concentrations.   

 
b. Perform an analysis of the calcium level response variable. 

 
c. Perform an analysis of the albumin level response variable. 

 
d. Summarize all four analyses (including the one discussed in Section 8.6).  What 

have the authors truly learned about their intervention? 
 

e. Discuss the authors analysis of the “Knowledge Score” variable in Table 2.  
Consideration of those results should be very different from the other variables in 
this table; explain why and tell what you believe these results mean. 
 

 
70 Shi, Y.X., Fan, X.Y, et. al. (2013).  Effectiveness of a nurse-led intensive educational programme on chronic kidney failure patients with 
hyperphosphataemia: randomized controlled trial.  Journal of Clinical Nursing, 22, 1189-1197. 
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