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Matrix Multiplication

Suppose we buy two CDs at $3 each and four Zip disks 
at $5 each. We calculate our total cost by computing the 
products’ price ×××× quantity and adding:

Cost = 3 ×××× 2 + 5 ×××× 4 = $26.

Let us instead put the prices in a row vector

P = [3 5] 

and the quantities purchased in a column vector,

The price matrix

The quantity matrix
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Matrix Multiplication

Because P represents the prices of the items we are 
purchasing and Q represents the quantities, it would be 
useful if the product PQ represented the total cost, a single 

number (which we can think of as a 1 ×××× 1 matrix).

For this to work, PQ should be calculated the same way we 
calculated the total cost:

PQ = [3  5]        = [3 ×××× 2 + 5 ×××× 4] = [26].

Notice that we obtain the answer by multiplying each entry 
in P (going from left to right) by the corresponding entry 
in Q (going from top to bottom) and then adding the results.
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The Product Row ×××× Column
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The Product Row ×××× Column

The product AB of a row matrix A and a column matrix B 

is a 1 ×××× 1 matrix. 

The length of the row in A must match the length of the 
column in B for the product to be defined.

To find the product, multiply each entry in A (going from left
to right) by the corresponding entry in B (going from top to 
bottom) and then add the results.
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The Product Row ×××× Column

Visualizing

Quick Example

[2  1]           = [2 ×××× (–3) + 1 ×××× 1] 

= [–6 + 1] 

= [–5]
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The Product Row ×××× Column

Note

The row size has to match the column size. This means 
that, if we have a 1 ×××× 3 row on the left, then the column on 
the right must be 3 ×××× 1 in order for the product to make 
sense. For example, the product

[a  b  c]

is not defined. 
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The Product Row ×××× Column

Now to the general case of matrix multiplication:

The Product of Two Matrices: General Case

In general for matrices A and B, we can take the product 
AB only if the number of columns of A equals the number 
of rows of B (so that we can multiply the rows of A by the 
columns of B as above). 

The product AB is then obtained by taking its i j th entry 
to be:

i j th entry of AB = Row i of A ×××× Column j of B. As defined above

1010

The Product Row ×××× Column

Quick Examples

(R stands for row; C stands for column.)
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The Product Row ×××× Column

In matrix multiplication we always take

Rows on the left ×××× Columns on the right.

Look at the dimensions in the two Quick Examples.

(1 ×××× 4)(4 ×××× 3) → 1 ×××× 3 (2 ×××× 2)(2 ×××× 2) → 2 ×××× 2

The fact that the number of columns in the left-hand matrix 
equals the number of rows in the right-hand matrix 
amounts to saying that the middle two numbers must 
match as above.

Match Match
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The Product Row ×××× Column

If we “cancel” the middle matching numbers, we are left

with the dimensions of the product.

Before continuing with examples, we state the rule for 

matrix multiplication formally.
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The Product Row ×××× Column

Multiplication of Matrices: Formal Definition

If A is an m ×××× n matrix and B is an n ×××× k matrix, then the 
product AB is the m ×××× k matrix whose i j th entry is the 
product

1414

Example 3 – Matrix Product

Calculate:

Solution:

a. Before we start the calculation, we check that the 
dimensions of the matrices match up.
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Example 3 – Solution

The product of the two matrices is defined, and the 
product will be a 2 ×××× 3 matrix (we remove the matching 
4s: (2 ×××× 4)(4 ×××× 3) → 2 ×××× 3). 

To calculate the product, we follow the previous 
prescription:

cont’d
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Example 3 – Solution

b. The dimensions of the two matrices given are 2 ×××× 1 and 
1 ×××× 2. Because the 1s match, the product is defined, and 
the result will be a 2 ×××× 2 matrix.

cont’d
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The Product Row ×××× Column

Note

In part (a) we cannot multiply the matrices in the opposite 

order—the dimensions do not match. 

We say simply that the product in the opposite order is not 

defined. In part (b) we can multiply the matrices in the 

opposite order, but we would get a 1 ×××× 1 matrix if we did so.

1818

The Product Row ×××× Column

Thus, order is important when multiplying matrices. In

general, if AB is defined, then BA need not even be

defined.

If BA is also defined, it may not have the same dimensions

as AB. And even if AB and BA have the same dimensions,

they may have different entries.
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The Product Row ×××× Column

There are very special square matrices of every size: 1 ×××× 1, 
2 ×××× 2, 3 ×××× 3, and so on, called the identity matrices.

Identity Matrix

The n ×××× n identity matrix I is the matrix with 1s down the 
main diagonal (the diagonal starting at the top left) and 0s 
everywhere else. 

In symbols,

Iii = 1, and

Iij = 0  if i ≠≠≠≠ j.

2020

The Product Row ×××× Column

Quick Examples

1. 1 ×××× 1 identity matrix I = [1]

2. 2 ×××× 2 identity matrix I =

Note

Identity matrices are always square matrices, meaning that 
they have the same number of rows as columns. There is 
no such thing, for example, as the “2 ×××× 4 identity matrix.”
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Example 6 – Identity Matrix

Evaluate the products AI and IA, where
and I is the 3 ×××× 3 identity matrix.

Solution:

First notice that A is arbitrary; it could be any 3 ×××× 3 matrix.

and

2222

Example 6 – Solution

In both cases, the answer is the matrix A we started with. In 
symbols,

AI = A

and

IA = A

no matter which 3 ×××× 3 matrix A you start with.

cont’d
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Example 6 – Solution

Now this should remind you of a familiar fact from 
arithmetic:

a ���� 1 = a

and

1 ���� a = a.

That is why we call the matrix I the 3 ×××× 3 identity matrix, 
because it appears to play the same role for 3 ×××× 3 matrices 
that the identity 1 does for numbers.

cont’d
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The Product Row ×××× Column

We can now add to the list of properties we gave for matrix 

arithmetic by writing down properties of matrix 

multiplication. 

In stating these properties, we shall assume that all matrix 

products we write are defined—that is, that the matrices 

have correctly matching dimensions.
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The Product Row ×××× Column

Properties of Matrix Addition and Multiplication

If A, B and C are matrices, if O is a zero matrix, and if I is 
an identity matrix, then the following hold:

A + (B + C) = (A + B) + C Additive associative law

A + B = B + A Additive commutative law

A + O = O + A = A Additive identity law

A + (–A) = O = (–A) + A Additive inverse law

c(A + B) = cA + cB Distributive law

(c + d)A = cA + dA Distributive law

2626

The Product Row ×××× Column

1A = A Scalar unit

0A = O Scalar zero

A(BC) = (AB)C Multiplicative associative law

c(AB) = (cA)B Multiplicative associative law

c(dA) = (cd)A Multiplicative associative law

AI = IA = A Multiplicative identity law

A(B + C) = AB + AC Distributive law

(A + B)C = AC + BC Distributive law

OA = AO = O Multiplication by zero matrix
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The Product Row ×××× Column

Note that we have not included a multiplicative 
commutative law for matrices, because the equation
AB = BA does not hold in general.

In other words, matrix multiplication is not exactly like 
multiplication of numbers.

We should also say a bit more about transposition. 
Transposition and multiplication have an interesting 
relationship. 

What is the transposition of a matrix?  

2828

The Product Row ×××× Column

The Transposition of a Matrix:
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The Product Row ×××× Column

Properties of Transposition

(A + B)T = AT + BT

(cA)T = c(AT)

(AB)T = BTAT

Notice the change in order in the last one. The order is 
crucial.
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The Product Row ×××× Column

Quick Examples
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The Product Row ×××× Column

These properties give you a glimpse of the field of

mathematics known as abstract algebra.

Algebraists study operations like these that resemble the

operations on numbers but differ in some way, such as the

lack of commutativity for multiplication.


